3.189 \(\int \frac{(a+a \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=158 \[ \frac{4 a^2 (2 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}-\frac{2 a^2 (A-3 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 A \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{3 d \sqrt{\sec (c+d x)}}+\frac{4 a^2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

(4*a^2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (4*a^2*(2*A + 3*B)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (2*a^2*(A - 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/
(3*d) + (2*A*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.255765, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4017, 3997, 3787, 3771, 2639, 2641} \[ -\frac{2 a^2 (A-3 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d}+\frac{4 a^2 (2 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 A \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{3 d \sqrt{\sec (c+d x)}}+\frac{4 a^2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(4*a^2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (4*a^2*(2*A + 3*B)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (2*a^2*(A - 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/
(3*d) + (2*A*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 4017

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rule 3997

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> -Simp[(b*B*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*(n + 1)), x] + Dist[1/(n + 1), Int[(d*C
sc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f
, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2}{3} \int \frac{(a+a \sec (c+d x)) \left (\frac{1}{2} a (5 A+3 B)-\frac{1}{2} a (A-3 B) \sec (c+d x)\right )}{\sqrt{\sec (c+d x)}} \, dx\\ &=-\frac{2 a^2 (A-3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{4}{3} \int \frac{\frac{3 a^2 A}{2}+\frac{1}{2} a^2 (2 A+3 B) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=-\frac{2 a^2 (A-3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\left (2 a^2 A\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (2 a^2 (2 A+3 B)\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=-\frac{2 a^2 (A-3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\left (2 a^2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (2 a^2 (2 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{4 a^2 A \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{4 a^2 (2 A+3 B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}-\frac{2 a^2 (A-3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 2.40561, size = 320, normalized size = 2.03 \[ \frac{a^2 \sec ^4\left (\frac{1}{2} (c+d x)\right ) (\sec (c+d x)+1)^2 (A+B \sec (c+d x)) \left (\frac{-3 (2 A-B) \csc (c) \cos (d x)-3 (2 A+B) \csc (c) \cos (2 c+d x)+A \sin (2 (c+d x))}{4 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{i \sqrt{2} e^{-i d x} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{1+e^{2 i (c+d x)}} \cos ^3(c+d x) \left (e^{i d x} \left (A e^{i (c+d x)} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right )-\left (-1+e^{2 i c}\right ) (2 A+3 B) \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )\right )+3 A e^{i c} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d}\right )}{3 (A \cos (c+d x)+B)} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(a^2*Sec[(c + d*x)/2]^4*(1 + Sec[c + d*x])^2*(A + B*Sec[c + d*x])*((I*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*
I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c + d*x]^3*(3*A*E^(I*c)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E
^((2*I)*(c + d*x))] + E^(I*d*x)*(-((2*A + 3*B)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(
c + d*x))]) + A*E^(I*(c + d*x))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])))/(d*E^(I*d*x)*(-1 + E
^((2*I)*c))) + (-3*(2*A - B)*Cos[d*x]*Csc[c] - 3*(2*A + B)*Cos[2*c + d*x]*Csc[c] + A*Sin[2*(c + d*x)])/(4*d*Se
c[c + d*x]^(5/2))))/(3*(B + A*Cos[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 1.832, size = 388, normalized size = 2.5 \begin{align*} -{\frac{4\,{a}^{2}}{3\,d} \left ( 2\,A\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( A+3\,B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +2\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-3\,A\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +3\,B\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x)

[Out]

-4/3*a^2*(2*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A+3*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+2*A*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)-3*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2
*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B a^{2} \sec \left (d x + c\right )^{3} +{\left (A + 2 \, B\right )} a^{2} \sec \left (d x + c\right )^{2} +{\left (2 \, A + B\right )} a^{2} \sec \left (d x + c\right ) + A a^{2}}{\sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((B*a^2*sec(d*x + c)^3 + (A + 2*B)*a^2*sec(d*x + c)^2 + (2*A + B)*a^2*sec(d*x + c) + A*a^2)/sec(d*x +
c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{2} \left (\int \frac{A}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{2 A}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int A \sqrt{\sec{\left (c + d x \right )}}\, dx + \int \frac{B}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int 2 B \sqrt{\sec{\left (c + d x \right )}}\, dx + \int B \sec ^{\frac{3}{2}}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+B*sec(d*x+c))/sec(d*x+c)**(3/2),x)

[Out]

a**2*(Integral(A/sec(c + d*x)**(3/2), x) + Integral(2*A/sqrt(sec(c + d*x)), x) + Integral(A*sqrt(sec(c + d*x))
, x) + Integral(B/sqrt(sec(c + d*x)), x) + Integral(2*B*sqrt(sec(c + d*x)), x) + Integral(B*sec(c + d*x)**(3/2
), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)